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Abstract. In the first two papers of this series we considered self-similar fractal lattices 
with a finite order of ramification R. In the present paper we study physical models defined 
on a family of fractals with R = W. In order to characterise the geometry of these systems, 
we need the connectivity Q and the lacunarity L, in addition to the fractal dimensionality 
D. It is found that discrete-symmetry spin models on these lattices undergo a phase 
transition at T, > 0. An approximate renormalisation group scheme is constructed and 
used to find the dependence of T, and the critical exponents on the geometrical factors. 
We also solve the problem of resistor networks on these fractals, and discuss its 
consequences concerning spin models with continuous symmetry. 

1. Introduction 

In two previous papers (Gefen er a1 1983a, 1984-hereafter referred as I and 11) we 
have analysed the critical behaviour of various spin systems on certain self-similar 
lattices with non-integer fractal dimensionalities D and a finite order of ramification, 
R. None of these systems exhibited phase transitions at finite temperatures. In this 
paper we complete the series by considering the family of Sierpinski carpets, for which 
R = 00. The geometrical characterisation of such systems requires additional para- 
meters, e.g. the connectivity, 0, and the lacunarity, L. We find that critical exponents 
depend on these parameters, thus generalising the concept of universality. 

The outline of the paper is as follows: the various geometrical parameters which 
are needed are introduced in 0 2. Section 3 is devoted to an analysis of Ising models 
on these fractals. We construct an approximate renormalisation-group scheme, find 
how the critical temperature and the critical exponents vary with the geometrical 
factors, and describe the flow diagrams in the Hamiltonian space. In 0 4 we study the 
scaling of resistor networks defined on these fractals. The results are used to derive 
the low temperature properties of spin systems with n 3 2  components. Section 5 
contains our conclusions. 

2. Geometry of the Sierpinski carpets 

The fractal lattices studied in this paper are called Sierpinski carpets (Mandelbrot 
1977, 1982, ch 14, Gefen er a1 1980). They are constructed in the following way: 
we start with a square of unit area. This square is subdivided into b2 subsquares, out 
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1278 Y Gefen, A Aharony and B Mandelbrot 

of which n’ squares are cut out. The procedure is then repeated for the smaller squares, 
and iterated until one reaches the ‘microscopic’ length scale. The resulting geometrical 
shape is self-similar on all the intermediate length scales. In the following we shall be 
interested in cases in which Z = l 2  ( 1  being an integer), and the n’ squares are eliminated 
in a symmetric fashion. We first study the case in which the l 2  squares form one large 
island at the centre of each larger square. Such a case, with b = 7 and 1 = 3, is shown 
in figure l(a). 

(a)  ( b )  
Figure 1. Two stages of Sierpinski carpets with R =E, b =7,  I = 3, D = 1.8957 and 
Q=0.7124. ( a )  L-3.924, ( b )  L-0.9984. 

The fractal dimensionality, 0, is generally defined so that bD is equal to the number 
of new smaller units (Mandelbrot 1977, 1982). In our case, bD = b 2 -  n’ = b 2 -  1 2 ,  and 
we have (Mandelbrot 1977, 1982, Gefen et a1 1980) 

D = In( b2 - 12)/ln b. (2.1) 
In the two examples shown in figure 1 we have b = 7 and 1 = 3, so that D = In 40/ln 7 = 
1.8957. More examples are listed in table 1. Letting b have very large values, and 
varying I ,  one may construct carpets with D arbitrarily close to any value between 1 
and 2 (Gefen et a1 1983b). Our fractals are embedded in a two-dimensional Euclidean 
space ( d  = 2) and have the topological dimensionality DT = 1. Thus the general relation 
d 3 D 3 dT (Mandelbrot 1977,1982) is satisfied. The generalisation to d > 2 is straight- 
forward. 

The order of ramification, R ,  at a point P, is equal to the number of significant 
bonds which one must cut in order to isolate an arbitrarily large bounded set of points 
connected to P (see Mandelbrot 1982, ch 14 and I, 11). For the carpets, this number 
grows as a power of the size of this bounded set, so that R = W .  Instead, we thus 
consider the fractal dimensionalities of the ‘surfaces’ of the isolated bounded sets, 
{D’}. The connectivity, Q, is defined as the smallest value of D’, Q = min{D’}t. For 
our two-dimensional carpets, the ‘surface’ of an isolated set has the Euclidean 
dimensionality of a line, d = 1. In our case, with Z = 1 2 ,  boxes whose sides are vertical 
and horizontal straight lines that pass through 1 small squares have the smallest surface 
fractal dimensionality, so that 

Q = In( b - l)/ln b. (2.2) 
In the examples of figure 1, Q=ln  4/ln 7=0.7124. (See also table 1). Note that in 
t Another treatment of the connectivity is that of Dhar (1980). However, his ‘connectivity’, c, is related 
to Q by c = (1  - QjD)-’.  It has also been pointed out by Suzuki (1983), that an alternative definition of 
the connectivity, Q=min{D“}, where D“ is the dimensionality of a ‘cut’ that separates an infinite subset 
fLom the original one, may yield another value. An example is the Cayley tree, for which Q =CO whereas 
Q=O. 
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general d - 1 2  D’s Q. The cutting dimensionality is almost surely equal to ( D -  1) 
if the cutting line is drawn at random (Mandelbrot 1982, p 135). 

Another geometrical characteristic of these fractals is the lacunarity L, (Mandelbrot 
1979, Gefen et a1 1980, 1983b). We can construct two Sierpinski carpets with the 
same D and Q, for which the eliminated squares are scattered differently. Such an 
example is presented in figures l ( a )  and l (b ) .  The first one has a larger lacunarity, 
reflecting the fact that it is less homogeneous. Lacunarity measures the extent of the 
failure of a fractal to be translationally invariant, or the fluctuations around the ‘mass 
distribution law’ M - r D  where M is the ‘mass’ (the number of sites) of a part of the 
system whose linear size is r. In the present study we evaluate an approximate 
expression for L. We consider all the n square subarrays 1 X 1 cells in an array of b X b 
cells. For each of these 1 X 1 ‘coverings’, i, we count the number of non-eliminated 
subsquares, ni. The lacunarity is approximated by the mean square deviation of ni 
from its average, 

1 

n i  
~ 3 - x  ( n i - r i ) * ,  (2.3) 

where ri = X, ni /n .  For lattice in figure l (a) ,  one has four ‘coverings’ which contain 
one eliminated subsquare, eight ‘coverings’ containing two eliminated subsquares, four 
with three eliminations, etc. In this case ti = 5.75 and L = 3.9424. For the lattice in 
figure l (b) ,  with the same D and Q, L=0.9984. Obviously, the lattice in figure l ( b )  
is much more homogeneous. For translationally invariant lattices expression (2.3) 
yields L = 0. We have recently shown that the properties of the carpets approach 
those of hypercubic lattices, with the same non-integer dimensionality, in the limit 
L + 0. This limit may be obtained by letting b + and by scattering the eliminated 
squares as uniformly as possible (Gefen et a1 1983b). 

It should be noted that, in general, the properties of a carpet with fractal dimension- 
ality D differ from those of a hypercubic lattice with the same dimensionality. One 
typical characteristic of the latter is the number of bonds per site, which is equal to 
D. In appendix 1 we calculate the average number of bonds per site, for our carpets, 
and show that this number differs from D. The differences depend on the lacunarity. 
We expect these differences to disappear in the limit L+O (Gefen et a1 1983b). 

Finally, it is interesting to note (Mandelbrot 1982, p 135) that the asymmetric case 
of b = 2, 1 = 1 (one subsquare is eliminated in a corner) is topologically equivalent to 
the Sierpinski gasket in two dimensions (see 11), which can be directly related to the 
percolation problem (Gefen et a1 1981). 

3. Results tor king models 

We now place a spin variable on each lattice site of the microscopic lattice (obtained 
after iterating our decorating procedure down to a ‘microscopic’ length scale and 
stopping there). Spins are placed on all the lattice sites, including those which border 
the eliminated areas. The Hamiltonian of the Ising model is now written as 

where (ij) denotes a nearest-neighbour bond (on the microscopic lattice!). We believe 
that, unlike the cases with R <CO, discussed in I and 11, all fractals with R = CO have 
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phase transitions at finite temperatures. There are several ways of verifying this general 
statement. In our earlier work (Gefen et a1 1980) we presented a low temperature 
renormalisation group which implies the existence of an unstable fixed point at finite 
temperature (representing the critical point). In this section we summarise the results 
of an approximate bond-moving Migdal-Kadanoff real space renormalisation-group 
study (Migdal 1975, Kadanoff 1976), yielding the same result (as well as quantitative 
estimates of critical exponents). Since this approximation is expected to be very 
accurate at low temperatures, where it predicts a stable zero temperature fixed point, 
it supports our belief that one will always find a transition at a finite temperature. 

The iteration of the renormalisation-group transformation generates two basic 
exchange variables. We denote the 'coupling' via a bond which separates between two 
non-eliminated subsquares by K = J /  kBT ( kB is the Boltzmann constant and T is the 
temperature), and that of a bond which borders an eliminated subsquare by K,= 
Jw/ kBT.  The renormalisation procedure is composed of two steps: we first move all 
the bonds within a dedecorated (large) square to its perimeter (parallel to themselves), 
and then decimate the resulting (one-dimensional) perimeter bonds (Kadanoff 1976). 
Figures 2 and 3 exhibit the construction of K '  and KL, respectively, for the case b = 3, 

A 
I I I 1 I I 

-l L I - l  L I  

I I I I I I 
B 
io1 

A 

K' 
* 

B 
IC1 

Figure 2. Three steps in obtaining the renormalised 
K' between sites A and B for the case b = 3  and 
1 = 1 .  Full lines denote K whereas broken lines stand 
for K,. (a )  Directions of bond moving. (b)Bonds 
between A and B before decimating. ( c )  Final result 
after decimating over the degrees of freedom 1 
and 2. 

A A A  

U 

la1 

Figure 3. Same as figure 2, for KL. 

B B  
( b l  ic1 

1 = 1. The small arrows indicate the directions in which the bonds are moved. For a 
renormalised bond between two non-eliminated large squares (AB in figure 2), the 
first step ends up with three bonds in series, with coupling strengths 3K, K + 2K, and 
3K, respectively (figure 2(b)). The decimation of the two intermediate spins in figure 
2(b) then yields the renormalised bond K '  (figure 2(c)), with 

tanh K '  = tanh' 3K tanh(K + 2K,). ( 3 . 2 ~ )  

Similarly, the construction in figure 3 explains how one obtains the renormalised 
coupling K L, 

(3.2b) 

A generalisation of this example to the case in which a single large square, of size 
1 X  1, is eliminated in the centre of each larger square (figure l (a ) )  yields 

tanh KL = tanh2(K + K,) tanh 2K,. 
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(Gefen et a1 1980) 

tanh K'  = tanh'[( b - 1 - l ) K  + 2K,] tanhb-'( b K ) ,  

tanh K L  = tanh'[$( b - 1 - 2)K + 2K,] tanhb-'[$( b - l ) K  + K,]. 

( 3 . 3 ~ )  

(3.3b) 

Notice that within the approximation described above, the recursion relations close 
within the two-dimensional parameter-space, ( K ,  K,). For 1 = 0 we recover the known 
d = 2 results (Migdal 1975, Kadanoff 1976). 

For convenience we shall represent our results using the variables 

T = tanh K, T~ = tanh K,. (3.4) 

Since the 1 x 1 square is placed in the centre of the b X b square, we have b 3 1 + 2. If 
b > 1 + 2 then we find three trivial fixed points, 

A: (O ,O) ,  B: (0911, c: (1 ,1) ,  (3.5) 
where the coordinates refer to ( T ,  T,). For b = 1+2 there exists an additional trivial 
fixed point, 

D:  ( 1 , O )  ( b =  1+2) .  (3.6) 
Examples of the renormalisation group flows (3.3), in the T -  T, plane, are shown in 
figure 4.  The point D is a fixed point in figure 4(a) ( b  = 3 , 1 =  1) and 4( b )  ( b  = 7 , 1 =  5 ) ,  
but not in figure 4(c) ( b  = 7, 1 = 3). In all the cases, the point A corresponds to K and 

TW 

IC) 

Figure 4. Flow diagrams for Sierpinski carpets with 
a central cutout. ( a )  b = 3 ,  1=1.  ( b )  b = 7 ,  1 = 5 .  
(c) b = 7 ,  1 = 3. Quantitative data are given in table 
1. 
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K ,  being zero, hence this is the infinite temperature (paramagnetic) fixed point. Point 
B corresponds to K = 0 and K ,  = 00, and describes an anisotropic situation, where the 
sites on a ‘wall’ are coupled infinitely strongly. The third point C is the isotropic T = 0 
(ferromagnetic) point. The point D is also a zero temperature point, but with non- 
interacting ‘wall sites’ (free ends). This fixed point, and the whole line K ,  = 0, represent 
systems like the one shown in figure 5 ( b  = 3 ,  1 = 1 with no bonds on the boundaries 
of the eliminated squares). 

We next discuss flows along special axes. Starting at a point ( 0 , ~ ~ )  on the T, axis 
( T  = 0), the flow stays on this axis, going from B to A. Flows which start on the line 
T,= 1 also stay on it. We can expand (3.3) near B and C (see appendix 2),  and find 
that there are flows along the line T,= 1 towards B and C; hence there is another 
fixed point on the T, = 1 line, unstable in the direction of this axis. We denote this 
point by E. Now we have to distinguish between the cases b = 1 + 2 and b > 1 + 2. 

t l d l d d  
Figure 5. Two stages of Sierpinski carpet ( b  = 3, I = 1 )  with free ends ( rw = 0). 

We start with b = 1+2. In this case, D is a fixed point, and flows which start on 
the T axis (T,=O) stay on it, flowing from D to A. We recall that the points along 
this line correspond to configurations with free ends. For, the case b = 1+2, setting 
T, = O  lowers the order of ramification from R =a to a finite value, i.e., R = 2 ,  3 or 
4, without changing the fractal dimensionality (cf figure 5 ) .  Thus, we should obtain 
a quasi one-dimensional flow (as considered in I, 11) along the T, = 0 axis. For the 
b> 1 + 2  case R is infinite and the situation is completely different. 

We next consider the line T = 1. Again, flows remain on this line. Expansions of 
(3.3) near C and D reveal that these points are stable along this line, so that there 
must exist an additional unstable fixed point with T = 1.  We denote this point by F. 
It turns out that the case b = 3 ,  1 = 1 is special, and we treat it separately below. 

We now turn to the case b > 1+2. As mentioned above, D is no longer a fixed 
point. Starting on the T axis (T,=O),  flows leave this axis and develop finite values 
of T,.,. All the points on the line T =  1 (including the point D) flow (in one iteration) 
to the point C. The second non-trivial fixed point F is now removed from the line 
T = 1 ,  and appears near the 7-axis. 

The stability analysis in the vicinity of each fixed point is described in detail in 
appendix 2. In addition to that analysis, we iterated the recursion relations numerically, 
and identified the locations of, and the exponents near, the fixed points E and F. The 
numerical results are summarised in table 1.  For each pair of b and 1, the table lists 
D, Q, TE and the exponents near E, the coordinates of F and the exponents near F, 
and the critical value T~ (at which the critical line EF crosses the diagonal T~ = T = T,). 

We find three typical flow diagrams. Figure 4 ( a )  shows the special case b = 3 , 1 =  1, 
which differs from all the cases with b = 1 + 2 > 3. The latter cases are represented by 
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figure 4(b) ( b  = I + 2 = 7). Figure 4(c) shows a typical flow diagram for b > I + 2 ( b  = 7, 
l = 3 ) .  In all the cases the bold line EF represents the critical line, separating the 
disordered phase (flows to A) from the ordered one (flows to C). The critical point 
is represented by the fixed point F, and the thermal exponent v is equal to l / h F , l .  

Notice the monotonic variation of the exponents (and the fixed points coordinates) 
as we change D or Q, but keep some variable (such as b or I )  constant. A notable 
exception is the b = 1 + 2 = 3 case, where, for example, the exponent hF,l does not obey 
the monotonic decrease with D. This case is also special in the topology of the flow 
diagram, see figure 4(a). Except for this special case, the exponent v increases as D 
(and Q) are decreased. This is similar to the known hypercubic lattices, for which v 
decreases monotonically from CO at d = 1 to 

As was mentioned above we can construct various carpets where we vary L and 
keep D, R,  Q, etc constant. We present here relations analogous to (3.3) for the case 
of 'scattered lacunarity' (cf figure 1 ( b ) ) ,  where the eliminated subsquares are scattered 
symmetrically and do not touch each other. As an example, we consider the case 
I = t( b - 1). The recursion relations are 

at d =4.  

tanh K '  = tanhb-'( bK) tanh'[K + ( b  - l)K,], 

tanh KL = tanhb-'( IK +K,) tanh'[( I + l)K,], 
(3.7) 

An analysis similar to that presented in appendix 2, together with a numerical 
analysis, yield figure 6. Qualitatively, the results are similar to those of figure 4. 
Quantitatively, the details are very different. Although figure 6 was calculated for 
b = 7 and I = 3, which have the same values as figure 4(c) (and therefore the same 
values of D and Q), the fixed point F is now at (1, -0.1448), T~ is now increased to 
-0.245 (instead of -0.194), and the exponents at F are -0.460, --0.335 (instead 
of =0.524, = - 1.436). The point E and its exponents remain unchanged. We conclude 
that at fixed D and Q, v increases with decreasing lacunarity. This simple example 
indicates that lacunarity affects the universal behaviour. The topic deserves full study. 

c 

F 

0 i = ' i  A 1 T 

Figure 6. Flow diagrams for Sierpinski carpet with scattered cutouts, b = 7,  I = 3 (cf figure 
l (b ) ) .  

4. Resistor networks 

In this section we study the scaling of the resistivity of resistor networks which are 
put on Sierpinski carpets. We use the same approximate renormalisation group scheme 
described in § 3. We put resistors R, on bonds which border eliminated squares, and 



Phase transitions on fractals: III 1285 

resistors R elsewhere. A renormalisation step includes moving the resistors to the 
perimeter of each large square, adding the resistivities of parallel resistors, then 
summing the resulting resistivities in series, and obtaining equivalent resistors for the 
renormalised system. 

For systems with one symmetric central cutout we obtain the following recursion 
relations 

( b 2 +  1’- f b  -26 + 21)RR,+ 3( b -  I)R2 
b[R,( b - I -  2 )  + 3 R ]  

R’ = 

R:, = 

9 

R R t 2 (  b2 + 1’- f b  - 2b + I) + 4(2b  - 1)R2R, 
[ ( b - 1) R , + 2R][ ( b - I - 2 )  R,  + 4 R ] 

’ 

(4.1) 

Notice that this method is exact for translationally invariant two-dimensional lattices, 
no matter what b is. 

We now study the flows in the ( R ,  R,) space. One should recall that due to the 
fact that resistivities rather than conductivities are used, the analogue of the point 
(0,O) of the previous section is now (CO, a), etc. We start with some limiting cases. 
R = 0: In one iteration all the flows reach the point (0,O). R, = 0: In this case RL = 0, 
and R’ = [( b-  I ) / b ] R .  Thus we flow on the R, = 0 axis towards (0,O). R =CO: We 
have R‘ = a, RL = ( b  - f f ) R w  > R,, and we flow towards (CO, CO). R,  = CO: We obtain 
R’ = [( b-  I ) / b  + I / (  b - I - 2 ) ] R  > R, and RL = [2(b2+ 1’- Ib - 2b + I ) / ( b  - l ) ( b  - I -  
2 ) ] R  > R. R = R,: We have R ’ = R [( b - I )  ( b - I + 1 )  + Ib]/ b( b - I + 1 )  2 R, with 
equality for I =  1 ,  and R : , = R ( 2 b 2 + 2 1 2 + 2 f b + 4 b - 2 1 ) / ( b + 1 ) ( b - f + 2 ) >  R. 

It is useful to consider the recursion relation for the ratio a = R,/ R, 

a’ = ab{[2( b2+  1’- Ib-2b+ I)a +4(2b-  I ) ][ (b-  I -2)a +3]} /  

x {[( b2+ 1’- Ib - 2b + 2 f ) a  + 3( b - I ) ] [ (  b - 1)a + 2 ] [ ( b  - I - 2)a  + 41). 
(4.2) 

It is easy to see that for a<< 1 one has 

a’ = [ ( 2  b - I )  b ] /  ( 2 b  - 2l)]a,  

a’ = 2b(b2 + I* - f b  - 2b + ~ ) / [ ( b  - 1)(b2  + 1’- ~b - 2b + 21)] ,  

(4.3) 

i.e. a’ > a. Similarly, if a >> 1 then after one iteration one has 

(4.4) 
so that a’ becomes of order unity. In general, a will flow to a fixed point value which 
is determined by the cubic equation 

b[2(b2+ 1 2 -  Ib -2b+ / ) a  +4(2b  - ~ ) ] [ ( b  - I -  2)a  + 31 

= [ ( b 2 +  1’- lb -2b+2f)a  + 3 ( b -  f ) ] [ ( b -  1)a  + 2 ] [ ( b -  f - 2 ) a  +4].  (4.5) 
This fixed point has the value a* = 2 for b >> 1 ( D  close to 2)  and the value a* =$ for 
b = f +2 >> 1 ( D  close to one). Additional values of a* are listed in table 2. 

Having reached the fixed ratio a*, equation (4.1) now yields 

( b 2 +  f 2 -  Ib-2b+2I)a*+3( b-  1) 
R’ = R. b[( b - f - 2)a* + 31 (4.6) 

Writing this in the form 

R‘ = biR, (4.7) 
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Table 2. Results for resistor networks on the carpets. 

b 1 a *  ,! 2-  D 

3 1 1.712 0.194 0.107 
5 1 1.922 0.048 0.025 
5 3 1.580 0.424 0.277 
9 1 1.982 0.0099 0.0057 
9 3 1.918 0.085 0.054 
9 7 1.525 0.605 0.423 

we can identify the exponent For hypercu_bic lattices one expects that f =  2 - d. 
Table 2 also contains a comparison between 5 and 2 - D. In the limiting cases b >> 1 
and b = 1 + 2 >> 1 we find that f -  0 and = 1, in agreement with (2 - D )  (see also Gefen 
et a1 1983b). For all the cases that we studied [ satisfies ( a 2 - D .  Note also 
that table 2 shows monotone variation of [ with 1 (for a fixed b )  and with b (for a 
fixed 1). 

It is worth noting that the recursion relations for R are the same as those for 
K-' = k B T / J  for spin models with continuous symmetry ( n  3 2 spin components) at 
low temperature (e.g. JosC et a1 1977, Stinchcombe 1979). The exponent corresponds 
to the expone+ determining the stability of the zero temperature fixed point. Since 
we found that 5 > 0, this fixed point is unstable, and there is no long range order. This 
is to be expected, since we considered only the case D < 2 ,  and the lower critical 
dimensionality for such models is equal to two. It would be interesting to study the 
same problem for D > 2. 

5. Conclusion 

In this paper we have discussed a family of self-similar lattices with an infinite order 
of ramification. We emphasised the importance of this and other geometrical factors 
and their relevance to the critical behaviour of physical models put on these fractals. 
Besides contributing to the understanding of thermodynamical systems on fractals, we 
suggest that these models may be related to real physical systems. Thus, for example, 
in the limit of K ,  approaching zero, some of the models become finitely ramified. 
These and the models that were described in I and 11, may serve as models for 
percolating clusters and backbones (cf Gefen et a1 1981). The resistor networks 
described in 0 4 may be relevant to the description of conductor-superconductor 
mixtures. 
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Appendix 1. Average number of bonds per site on the carpet 

Consider the carpet with a central cutout (of size 1 X 1, out of a square of size b X b) .  
After k decoration iterations, the number of bonds per site is given by 

k - 1  (=) Ak = (2( b2 - 1 2 ) k  + 2 1 lb( b2 - 1 2 ) k - f l - ' ) / (  ( b2- 1 2 ) k  
spins k f l = O  

+ y [2(lbn - 1) + l](b2- 12)k-fl-' 
f l = O  

( A l . l )  

In the example of figure l (a )  ( b = 7 ,  l = 3 ,  D-1.8957), we have A2=1.8913, A 3 =  
1.8878, . . . . For carpets of lower lacunarity, when the eliminated subsquares are 
scattered (e.g. figure l (b) ) ,  the series yields higher values. The general formula is 

k - 1  (-) 3 Ak = (2( b2- 12)k + 212 bn(b2-  / 2 )k -n-1 ) / (  ( b2- / 2 ) k  
spins k f l=O 

+ 1 2  y [2(bf l - l )+ l ] (b2-12)k-n-1  
f l = O  

(A1.2) 

and for figure 1 (b) we find A2 = 1.948, A3 = 1.938, . . . . 
Since in both cases D = 1.8957, it is clear that the series {Ak} differs from D. The 

difference seems to depend on the lacunarity, and may probably serve as an alternative 
measure of it. 

Appendix 2. Analysis of recursion relations 

The linear stability of the fixed points of (3.3) is governed by the four derivatives 

87' 
-= cosh' K 

b( b - I) tanhb-'-'( bK) 
tanh'[2Kw+(b-l-1K] ( cosh2(bK) 

+ 
a7 

tanhf-'[2K, + ( 6  - I - l ) ]  
1( b - 1 - 1) tanhb-'( bK)  

cosh2[2K,+ ( b  - 1 - 1)K]  (A2.1) 

a7' 21 tanh'-'[2KW+(b-l-1)K] 
- = cosh2 K, tanhb-'( bK) 
a 7, cosh2[2K,+ ( b  - 1 - 1)K] ' 

(A2.2) 

ar:, -=cosh2 K 
a7 ( 2 cosh2[K,+i( b - 1)K] 

( b -  l)(b- 1) tanhb-'-'[K,+i(b- 1)K] 
tanh'[2Kw+t( b - 1 - 2)K] 

tanhf-'[2K,+i(b-1-2)K] 
1(b- 1-2) tanhb-'[K,+;(b- 1)K] + 

2 ~ 0 ~ h ~ [ 2 K , + i ( b - 1 - 2 ] K ]  
(A2.3) 

a T:, ( 6 -  I )  tanhb-'-'[K,+$(b-l)K] - = cosh2 K ,  
ar, ( cosh2[K, + $( b - 1)K] tanh'[2KW+i(b- 1 -2)Kl 

). (A2.4) + 21 tanhb-'[Kw+i(b- 'IK] tanhf-1[2K, +i( b - 1 - 2)K] 
cosh2[2K,+$(b- !-2)K] 

All four derivatives vanish at the fixed point A. One must therefore go to higher- 
order terms. Along the r = O  direction, the flow of r, is given by 7:. = 2'7;. For 
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b - 1 = 2, the other eigendirection is along the T ,  = 0 axis, where we have T' = b'-'~'. 
The flow into A is thus rather fast. 

At the point B we find ( ~ T L / ~ T , )  = b-  I ,  with all the other derivatives equal to 
zero. The flow along the BC axis is described by T' = bb-'d'-', the instability along 
the AB axis is governed by the exponent 

(A2.5) 

All the derivatives also vanish at the fixed point C. The flow towards C along the 
CD axis is infinitely fast (a single iteration brings directly to C), while that along the 
BC axis has exp(-2K') - ( b -  I )  exp(-2bK). 

In the case b = I + 2, the first three derivatives near the point D have the values I ,  
0 and 0. The derivative ( ~ T L / ~ T , )  has the value 0 if 1 # 1 and 2 if 1 = 1. The instability 
of D along the 7-axis is thus described by the exponent 

A B  = In( b - I)/ln b. 

AD=ln l/ln b. (A2.6) 

For b = 3, 1 = 1, D is also unstable along the line T = 1, with iD = In 2/ln b. For 
b = 1 + 2 > 3, D is strongly stable in this direction, with 71, = 2'7;. 

Note that AD represents the quasi-one-dimensional thermal exponent, 1/ v for the 
case T,=O (figure 5 ) .  As explained in I, the Ising thermal exponent is governed in 
this case by the singly connected portions of the curve. It is easy to see that only 1 
out of the b bonds (e.g. along an edge in figure 5 )  are singly connected, so that indeed 
one expects that 1/ v = In l/ln b. The temperature becomes marginal for 1 = 1. 

We now consider the non-trivial fixed points. The coordinates of the point E are 
( T $ ,  7, = 1). Assuming T ;  << 1 we can use (3.3) to estimate its value. We obtain 

tanh K'  = tanh'-'( bK)  (if 7, = l ) ,  (A2.7) 

hence 

7 (A2.8) 

and indeed there is a range of b and 1 for which K $  = << 1. To evaluate the critical 
exponents associated with the multicritical point E we use equations (A2.1)-(A2.4) 
and find that the critical exponent associated with the 7,-direction is 

K $  r, b - ( b - O / ( b - I - l )  

A E =  ( h ( b -  1 )  - ( b -  1)Kg)/ ln  b. (A2.9) 

In the special case b= 1+2, (A2.8) reduces to K $  = l /b*.  In the limit b >> 1, (2.1) 

A ~ = $ ( D - I ) .  (A2.10) 

If one identifies this exponent with 1/v, it is interesting to note that the result for v 
differs from that for hypercubic lattices ( v =  l / ( d -  1)). However, E is a multicritical 
point (and not a regular critical one), and the lacunarity of our carpet is clearly not 
small (Gefen er a1 1983b). 

In the case b = 1 + 2 > 3, the true critical properties are characterised by the point 
F. At this point, KT =CO and 

tanh K$,F = tanh'(2K$,,). (A2.11) 

In the limit KE << 1, this reduces to AE=In(b- l)/ln b. 

reduces to D = 1 +In 4/ln b, and we find that 
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The exponents near F are 

A 

h2,F=ln(l[l-2 tanh2 K$.F/(l  +tanh2 K:.F)]}/ln b. 

= (In I - 4K;,F )/ln b, 
(A2.12) 

There are some more subtleties concerning the flows in the parameter space. For 
example, one can see (equation 3.3) that for K = O  there is a fixed point on the AB 
axis. This point is an inflection point: stable in the direction of B and unstable in the 
direction of A. It is a T = 00 point (corresponding to a zero correlation length) and 
does not represent any interesting physical behaviour. Other such points occur for 
the b = 1 + 2  on the AD axis, and for the ‘scattered lacunarity’ carpets (see text). 
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